Computational
Intractability



Lets Review a Few
Problems....



Network Design

Input: graph G = (V, E) with edge costs

Minimum Spanning Tree: find minimum-cost subset of
edges to connect all vertices.

O(m log n)

Steiner Tree: find minimum-cost subset of edges to
connect all vertices in W C V

No polynomial-time algorithm known!



Knapsack Problem

Input: n items with costs and weights, and capacity C

Fractional Knapsack: select fractions of each item to
maximize total value without exceeding the weight
capacity.

O(n log n) greedy algorithm

0-1 Knapsack: select a subset of items to maximize toftal
value without exceeding weight capacity.
No polynomial-time algorithm known!



Tractability

@ Working definition: tractable = polynomial-time

@ There is a huge class of natural and interesting
problems for which

@ we dont know any polynomial time algorithm

@ we cant prove that none exists



The Importance of
Polynomial Time

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

nlog, n n? n3 1.5% L n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 <1lsec <1 sec < 1 sec < 1 sec 18 min  10%° years
n=>50 < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec < 1sec 1sec [12,892 years 107 years  very long

n = 1,000 < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec 2 min 12 days very long very long very long
n = 100,000 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 20 sec 12 days 31,710 years very long very long very long

Polynomial Not polynomial



Preview of Landscape:
Known Classes of Problems

P: polynomial time
NP: class that includes most
most of the problems

we dont know about
o EXP: exponential time

EXP

Goal 1: characterize problems we dont know about by
defining the class NP



NP-completeness

| NP-complete: class of problems
= S that are “as hard” as every

other problem in NP

A polynomial-time algorithm for any NP-complete
problem implies one for every problem in NP

Goal 2: understand NP-completeness



P 1= NP?

Two possibilities (we dont know which is true, but
we think P != NP)

P=NP

$1M prize if you can figure out the answer
(one of Clay institutes seven Millennium Problems)



Goals

Develop tools to classify problems within this landscape
and understand the implications

@ Polynomial Time Reductions: make statements about
relative hardness of problems

@ NP: characterize the class of problems that includes
both P and most known “hard” problems

@ NP-completeness: show that certain problems are as
hard as any others in NP



Polynomial Time
Reductions



Reduction

@ Map problem Y fo a different problem X that we know
how to solve

@ Solve problem X

@ Mapping solution of X back to a solution of Y

@ We've seen many reductions already



Reduction Example

Problem Y: given flight segments and maintenance time,
determine how to schedule airplanes to cover all flight
segments

1. Map tfo different problem X that we know how to solve
(X = network flow):

@ Nodes are city/time combinations
@ Edges are flight segments
@ Etc..



Reduction Example

2. Solve problem X (use Ford-Fulkerson)
3.Map solution of X back to solution of Y

@ Assign a different airplane to each s-t path with
flow =1



Polynomial-Time Reduction

@ Reduction. Problem Y is polynomial-time reducible to
problem X if arbitrary instances of problem Y can be
solved using:

@ Polynomial number of standard computational steps, plus
@ Polynomial number of calls to black-box that solves
problem X

@ Notation. Y <, X.

@ Conclusion. If X can be solved in polynomial time and
Y <, X, thenY can be solved in polynomial time.



Polynomial-Time Reduction

@ Classify problems according to relative difficulty.

@ Consequences of Y <, X

@ New algorithms. If X can be solved in polynomial-time,
then Y can also be solved in polynomial time.

@ Intractability. If Y cannot be solved in polynomial-time,
then X cannot be solved in polynomial time.



Basic Reduction Strategies

@ Reduction by simple equivalence.

@ Reduction from special case to general
case.

@ Reduction by encoding with gadgets.



Independent Set

o INDEPENDENT SET: Given a graph G = (V, E)
and an infeger K, is there a subset of vertices
S c V such that |S| > k, and for each edge at
most one of its endpoints is in S?

) What is the largest
O independent set?




Independent Set

o INDEPENDENT SET: Given a graph G = (V, E)
and an infeger K, is there a subset of vertices
S c V such that |S| > k, and for each edge at
most one of its endpoints is in S?




Vertex Cover

® VERTEX COVER: Given a graph G = (V, E) and
an integer K, is there a subset of vertices S c
V such that |S| < k, and for each edge, at least
one of its endpoints is in S?

P ol e the smallest
O vertex cover?




Vertex Cover

® VERTEX COVER: Given a graph G = (V, E) and
an integer K, is there a subset of vertices S c
V such that |S| < k, and for each edge, at least
one of its endpoints is in S?

U/




Vertex Cover and
Independent Set

@ Claim. S is an independent set iff V — S is a vertex cover.

%ﬁ;
O

O independent set

O vertex cover




Vertex Cover and
Independent Set

@ Claim. S is an independent set iff V — S is a vertex cover.

@ Proof of if-part:
@ Let S be any independent set.
@ Consider an arbitrary edge (u, v).
@ S independent = u¢ Sorve S
=5l € Ve SOFV €V a5
@ Thus, V — S covers (u, v).

@ Proof of only-if-part: similar



Vertex Cover and
Independent Set

@ Claim. VERTEX-COVER <, INDEPENDENT-SET

@ Proof. Given graph G = (V, E) and integer k, return
"yes” iff G has an independent set of size at least
n-kK.

(Is this polynomial?)

@ Claim. INDEPENDENT-SET <, VERTEX-COVER
@ Proof. similar



Basic Reduction Strategies

@ Reduction by simple equivalence.

@ Reduction from special case to general
case.

@ Reduction by encoding with gadgets.



Set Cover Problem

@ You want all towns in the county to be within 15
minutes driving time of some fire station.

@ Goal: build as few fire stations as possible satisfying
the driving time constraint.

@ (Station covers set of towns)



Set Cover

Amherst | Granby | Hadley | Pelham

Amherst o) 20 8 17 i

Granby | 20 40 21 23 9

Hadley 8 el 0 25 15

Pelham g 23 25 o) 31

F 19 9 15 31 0




Set Cover

@ SET COVER: Given a set U of elements, a collection S,,
S, ..., S, of subsets of U, and an integer Kk, does there

exist a collection of < k of these sets whose union is equal
to U?

U ={A, G H, P, SH;

S1 = {A, H} S4 = {P}
S2 = G, SH; S5 = 1G, H, SH}
S3 = {A, H, SH}



Set Cover

@ SET COVER: Given a set U of elements, a collection S,,
S, ..., S, of subsets of U, and an infteger Kk, does there

exist a collection of < k of these sets whose union is equal
to U?

U ={A, G H, P, SH;

Sl = {A, H} S4 = {P}
S2 = {G, SH} S5 = {G, H, SH}
S3 = {A, H, SH}

K243



Vertex Cover IS
Reducible to Set Cover

@ Claim. VERTEX-COVER <, SET-COVER.

@ Proof. Given a VERTEX-COVER instance G = (V, E) and k,
we construct a set cover instance whose size equals the
size of the vertex cover instance.

@ EXxercise



Vertex Cover IS
Reducible to Set Cover

@ Step 1: Map the vertex cover problem infto a set cover
problem

@ U is the set of all edges
@ For each vertex v, create a set
Sy ={e € E: eincident to v }

SET COVER
VERTEX

COVER U={1,2,3,4,5,67)
€7 _e; e; ©4 S SE S

e es Sho=tis) afte) o) ST {5}

S, = {1} S;= {1,2,6,7}




Vertex Cover IS
Reducible to Set Cover

@ Step 2: Solve the Set Cover problem using the same value

for k:

@ Is there a collection of at most k sets such that their

union is U?

Solving for
ki ZEP

SET COVER
U={1,2,3,4,5,6,7)
5,=1{3.7} S, =1{2, 4}

S.={3,4,5,6) S, = {5}
s, = {1) STe12 6,7}




Vertex Cover IS
Reducible to Set Cover

@ Step 3: Map the set cover solution back to a vertex cover
solution

@ For each set in the set cover solution, select the
corresponding vertex in the vertex cover problem

SET COVER
VERTEX

COVER U={1,2,3,4,5,67)
€7 _e; e; ©4 S SE S

e es S5.={3,4,D5,6} ST {5}

S, = {1} OF-RIW?, 6, 7}




Basic Reduction Strategies

@ Reduction by simple equivalence.
@ Reduction from special case to general case.

@ Reduction by encoding with gadgets.



Satisfiability

Term: A Boolean variable or its negation.
OR

Clause: A disjunction (Yor”) of terms.

Formula ®: A conjunction (“and”) of clauses

SAT: Given a formula, is there a truth assignment that satisfies
all clauses? (i.e. all clauses evaluate to “true”)

3-SAT: SAT where each clause contains exactly 3 terms



3-SAT iIs Reducible to
Independent Set

@ Claim. 3-SAT <, INDEPENDENT-SET.

® Proof. Given an instance ® of 3-SAT, we construct an instance
(G, k) of INDEPENDENT-SET that has an independent set of size
k iff @ is satisfiable.



3 Satisfiability Reduces to
Independent Set

@ Claim. 3-SAT < , INDEPENDENT-SET.

® Construction.
@ G contains 3 vertices for each clause, one for each term.

@ Connect 3 terms in a clause in a triangle.
@ Connect term tfo each of its negations.




3 Satisfiability Reduces to
Independent Set

@ Claim. 3-SAT < , INDEPENDENT-SET.

@ With an independent set solution, we can derive a SAT assignment.

X1 = true

G X3 = false

X2 = frue




3 Satisfiability Reduces to
Independent Set

@ Claim. G contains independent set of size k = || iff @ is
satisfiable.
@ Proof of if-part: Let S be independent set of size k.
@ S must contain exactly one vertex in each tfriangle.
@ Set these terms to tfrue.
@ Truth assignment is consistent and all clauses are satisfied.

|
w



3 Satisfiability Reduces to
Independent Set

@ Claim. G contains independent set of size k = |D| iff @ is
satisfiable.

@ Proof of only-if part: Given satisfying assignment, select one

true term from each friangle. This is an independent set of size
K. =

QAT sl

|
w



PEVITEYY,

@ Basic reduction strategies.
@ Simple equivalence:
INDEPENDENT-SET = , VERTEX-COVER.

@ Special case to general case:
VERTEX-COVER < , SET-COVER.

@ Encoding with gadgets: 3-SAT < , INDEPENDENT-SET.
@ Transitivity. If X<,Y and¥Y <, Z, then X <, Z.

® Proof idea: Compose the two algorithms.

& Example: 3-SAT < , INDEPENDENT-SET < , VERTEX-COVER < ,
SET-COVER.



