
Computational
Intractability



Let’s Review a Few 
Problems….



Network Design
Input: graph G = (V, E) with edge costs

Minimum Spanning Tree: find minimum-cost subset of 
edges to connect all vertices.

O(m log n)

Steiner Tree: find minimum-cost subset of edges to 
connect all vertices in W ⊆ V

No polynomial-time algorithm known!



Knapsack Problem
Input: n items with costs and weights, and capacity C

Fractional Knapsack: select fractions of each item to 
maximize total value without exceeding the weight 
capacity.

O(n log n) greedy algorithm

0-1 Knapsack: select a subset of items to maximize total 
value without exceeding weight capacity.

No polynomial-time algorithm known!



Tractability

Working definition: tractable = polynomial-time

There is a huge class of natural and interesting 
problems for which

we don’t know any polynomial time algorithm

we can’t prove that none exists



The Importance of 
Polynomial Time

Polynomial Not polynomial



Preview of Landscape: 
Known Classes of Problems

EXP NP

P: polynomial time
NP: class that includes most
     most of the problems 
     we don’t know about
EXP: exponential time

Goal 1: characterize problems we don’t know about by 
defining the class NP

P



NP-completeness

EXP

NP

P

NP-complete
NP-complete: class of problems 
that are “as hard” as every 

other problem in NP

A polynomial-time algorithm for any NP-complete 
problem implies one for every problem in NP

Goal 2: understand NP-completeness



P != NP?

EXP

NP
P

EXP
P = NP

Two possibilities (we don’t know which is true, but 
we think P != NP)

$1M prize if you can figure out the answer
(one of Clay institute’s seven Millennium Problems)

NP-complete



Goals
Develop tools to classify problems within this landscape 
and understand the implications

Polynomial Time Reductions: make statements about 
relative hardness of problems

NP: characterize the class of problems that includes 
both P and most known “hard” problems

NP-completeness: show that certain problems are as 
hard as any others in NP



Polynomial Time 
Reductions



Reduction

Map problem Y to a different problem X that we know 
how to solve
Solve problem X
Mapping solution of X back to a solution of Y

We’ve seen many reductions already



Reduction Example

Problem Y: given flight segments and maintenance time, 
determine how to schedule airplanes to cover all flight 
segments

1. Map to different problem X that we know how to solve 
(X = network flow):

Nodes are city/time combinations
Edges are flight segments
Etc..



Reduction Example

2.Solve problem X (use Ford-Fulkerson)
3.Map solution of X back to solution of Y

Assign a different airplane to each s-t path with 
flow = 1



Polynomial-Time Reduction
Reduction.  Problem Y is polynomial-time reducible to 
problem X if arbitrary instances of problem Y can be 
solved using:

Polynomial number of standard computational steps, plus
Polynomial number of calls to black-box that solves 
problem X

Notation.  Y ≤ P X.

Conclusion.  If X can be solved in polynomial time and 
Y ≤ P X , then Y can be solved in polynomial time.



Polynomial-Time Reduction

Classify problems according to relative difficulty.

Consequences of Y ≤ P X

New algorithms.  If X can be solved in polynomial-time, 
then Y can also be solved in polynomial time.

Intractability. If Y cannot be solved in polynomial-time, 
then X cannot be solved in polynomial time.



Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general 
case.

Reduction by encoding with gadgets.



Independent Set
INDEPENDENT SET:  Given a graph G = (V, E) 
and an integer k, is there a subset of vertices 
S ⊆ V such that |S| ≥ k, and for each edge at 
most one of its endpoints is in S?

3
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4 7

What is the largest 
independent set?



Independent Set
INDEPENDENT SET:  Given a graph G = (V, E) 
and an integer k, is there a subset of vertices 
S ⊆ V such that |S| ≥ k, and for each edge at 
most one of its endpoints is in S?
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Vertex Cover
VERTEX COVER:  Given a graph G = (V, E) and 
an integer k, is there a subset of vertices S ⊆ 
V such that |S| ≤ k, and for each edge, at least 
one of its endpoints is in S?
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What is the smallest 
vertex cover?



Vertex Cover
VERTEX COVER:  Given a graph G = (V, E) and 
an integer k, is there a subset of vertices S ⊆ 
V such that |S| ≤ k, and for each edge, at least 
one of its endpoints is in S?



Vertex Cover and 
Independent Set

Claim. S is an independent set iff V − S is a vertex cover.

vertex cover

independent set



Vertex Cover and 
Independent Set

Claim. S is an independent set iff V − S is a vertex cover.

Proof of if-part:
Let S be any independent set.
Consider an arbitrary edge (u, v).
S independent ⇒ u ∉ S or v ∉ S  
                  ⇒ u ∈ V − S or v ∈ V − S.
Thus, V − S covers (u, v).

Proof of only-if-part: similar



Vertex Cover and 
Independent Set

Claim. VERTEX-COVER ≤P INDEPENDENT-SET
Proof. Given graph G = (V, E) and integer k, return 
“yes” iff G has an independent set of size at least 
n-k. 
(Is this polynomial?)

Claim. INDEPENDENT-SET ≤P VERTEX-COVER
Proof. similar



Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general 
case.

Reduction by encoding with gadgets.



Set Cover Problem

You want all towns in the county to be within 15 
minutes driving time of some fire station.

Goal:  build as few fire stations as possible satisfying 
the driving time constraint.

(Station covers set of towns)



Set Cover

Amherst Granby Hadley Pelham South 
Hadley

Amherst

Granby

Hadley

Pelham
South 
Hadley

0 20 8 17 19

20 0 21 23 9

8 21 0 25 15

17 23 25 0 31

19 9 15 31 0



Set Cover
SET COVER:  Given a set U of elements, a collection S1, 
S2, . . . , Sm of subsets of U, and an integer k, does there 
exist a collection of ≤ k of these sets whose union is equal 
to U?

S1 = {A, H}
S2 = {G, SH}

S3 = {A, H, SH}

S4 = {P}
S5 = {G, H, SH}

U = {A, G, H, P, SH}



Set Cover
SET COVER:  Given a set U of elements, a collection S1, 
S2, . . . , Sm of subsets of U, and an integer k, does there 
exist a collection of ≤ k of these sets whose union is equal 
to U?

S1 = {A, H}
S2 = {G, SH}

S3 = {A, H, SH}

S4 = {P}
S5 = {G, H, SH}

U = {A, G, H, P, SH}

k = 3



Vertex Cover is 
Reducible to Set Cover

Claim.  VERTEX-COVER ≤P SET-COVER.

Proof.  Given a VERTEX-COVER instance G = (V, E) and k, 
we construct a set cover instance whose size equals the 
size of the vertex cover instance.

Exercise



Vertex Cover is 
Reducible to Set Cover

a

d

b

e

f c

VERTEX 
COVER

e1 

e2 e3 

e5 

e4 

e6 

e7 
Sa = {3, 7} S b = {2, 4}

Sc = {3, 4, 5, 6} Sd = {5}

Se = {1} Sf =  {1, 2, 6, 7}

Step 1:  Map the vertex cover problem into a set cover 
problem

U is the set of all edges
For each vertex v, create a set 
Sv = {e ∈ E : e incident to v }

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }



Vertex Cover is 
Reducible to Set Cover

Sa = {3, 7} S b = {2, 4}

Sc = {3, 4, 5, 6} Sd = {5}

Se = {1} Sf =  {1, 2, 6, 7}

Step 2:  Solve the Set Cover problem using the same value 
for k:

Is there a collection of at most k sets such that their 
union is U?

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
Solving for 

k = 2



Vertex Cover is 
Reducible to Set Cover

a

d

b

e

f c

VERTEX 
COVER

e1 

e2 e3 

e5 

e4 

e6 

e7 
Sa = {3, 7} S b = {2, 4}

Sc = {3, 4, 5, 6} Sd = {5}

Se = {1} Sf =  {1, 2, 6, 7}

Step 3:  Map the set cover solution back to a vertex cover 
solution

For each set in the set cover solution, select the 
corresponding vertex in the vertex cover problem

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }



Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.



Term:! A Boolean variable or its negation.
    xi OR x͞i

Clause:!A disjunction (“or”) of terms.
    Cj = x1 ⋁ x2 ⋁ x3

Formula Φ: A conjunction (“and”) of clauses
    C1 ⋀ C2 ⋀ C3 ⋀ C4

SAT: Given a formula, is there a truth assignment that satisfies 
all clauses? (i.e. all clauses evaluate to “true”)

3-SAT: SAT where each clause contains exactly 3 terms
    (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3)

Satisfiability



3-SAT is Reducible to 
Independent Set

Claim.  3-SAT ≤P INDEPENDENT-SET.

Proof.  Given an instance Φ of 3-SAT, we construct an instance 
(G, k) of INDEPENDENT-SET that has an independent set of size 
k iff Φ is satisfiable.



3 Satisfiability Reduces to 
Independent Set

Claim.  3-SAT ≤ P INDEPENDENT-SET.

Construction.
G contains 3 vertices for each clause, one for each term.
Connect 3 terms in a clause in a triangle.
Connect term to each of its negations.

k = 3

G

 (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3)

x1 x1 x1

x2

x2 x2x3 x3

x3



3 Satisfiability Reduces to 
Independent Set

Claim.  3-SAT ≤ P INDEPENDENT-SET.

With an independent set solution, we can derive a SAT assignment.

k = 3

G

 (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3)

x1 x1 x1

x2

x2 x2x3 x3

x3

x3 = false

x1 = true

x2 = true



3 Satisfiability Reduces to 
Independent Set

Claim.  G contains independent set of size k = |Φ| iff Φ is 
satisfiable.
Proof of if-part:  Let S be independent set of size k.

S must contain exactly one vertex in each triangle.
Set these terms to true.
Truth assignment is consistent and all clauses are satisfied.

k = 3

G

 (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3)

x1

x1

x1

x2

x2

x2x3 x3 x3



3 Satisfiability Reduces to 
Independent Set

Claim.  G contains independent set of size k = |Φ| iff Φ is 
satisfiable.

Proof of only-if part:  Given satisfying assignment, select one 
true term from each triangle. This is an independent set of size 
k.  ▪

k = 3

G

 (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3)

x1

x1

x1

x2

x2

x2x3 x3 x3



Review
Basic reduction strategies.

Simple equivalence:  
INDEPENDENT-SET ≡ P VERTEX-COVER.
Special case to general case:  
VERTEX-COVER ≤ P SET-COVER.
Encoding with gadgets:  3-SAT ≤ P INDEPENDENT-SET.

Transitivity.  If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Proof idea: Compose the two algorithms.

Example:  3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P 
SET-COVER.


