Computational Intractability

Let's Review a Few Problems....

Network Design

Input: graph G = (V, E) with edge costs

Minimum Spanning Tree: find minimum-cost subset of edges to connect all vertices. O(m log n)

Steiner Tree: find minimum-cost subset of edges to
connect all vertices in W ⊆ V
No polynomial-time algorithm known!

Knapsack Problem

Input: n items with costs and weights, and capacity C

Fractional Knapsack: select fractions of each item to maximize total value without exceeding the weight capacity.

O(n log n) greedy algorithm

0-1 Knapsack: select a subset of items to maximize total value without exceeding weight capacity. No polynomial-time algorithm known!

Tractability

Working definition: tractable = polynomial-time
There is a huge class of natural and interesting problems for which
we don't know any polynomial time algorithm
we can't prove that none exists

The Importance of Polynomial Time

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	<i>n</i> ²	<i>n</i> ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
<i>n</i> = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Polynomial

Not polynomial

Preview of Landscape: Known Classes of Problems

P: polynomial time NP: class that includes most most of the problems we don't know about EXP: exponential time

Goal 1: characterize problems we don't know about by defining the class NP

NP-completeness

NP-complete: class of problems that are "as hard" as every other problem in NP

A polynomial-time algorithm for any NP-complete problem implies one for every problem in NP

Goal 2: understand NP-completeness

P != NP?

Two possibilities (we don't know which is true, but we think P != NP)

\$1M prize if you can figure out the answer (one of Clay institute's seven Millennium Problems)

Goals

Develop tools to classify problems within this landscape and understand the implications

- Polynomial Time Reductions: make statements about relative hardness of problems
- NP: characterize the class of problems that includes both P and most known "hard" problems
- NP-completeness: show that certain problems are as hard as any others in NP

Polynomial Time Reductions

Reduction

Map problem Y to a different problem X that we know how to solve

Solve problem X

Mapping solution of X back to a solution of Y

We've seen many reductions already

Reduction Example

Problem Y: given flight segments and maintenance time, determine how to schedule airplanes to cover all flight segments

 Map to different problem X that we know how to solve (X = network flow):

Nodes are city/time combinations

- Edges are flight segments

Reduction Example

2. Solve problem X (use Ford-Fulkerson)
3. Map solution of X back to solution of Y
Assign a different airplane to each s-t path with flow = 1

Polynomial-Time Reduction

- Reduction. Problem Y is polynomial-time reducible to problem X if arbitrary instances of problem Y can be solved using:
 - Polynomial number of standard computational steps, plus
 Polynomial number of calls to black-box that solves problem X
- ⊘ Notation. $Y ≤_P X$.

Conclusion. If X can be solved in polynomial time and $Y \leq_P X$, then Y can be solved in polynomial time.

Polynomial-Time Reduction

Classify problems according to relative difficulty.

Consequences of $Y \leq_P X$

New algorithms. If X can be solved in polynomial-time, then Y can also be solved in polynomial time.

Intractability. If Y cannot be solved in polynomial-time, then X cannot be solved in polynomial time.

Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices
 S ⊆ V such that |S| ≥ k, and for each edge at most one of its endpoints is in S?

What is the largest independent set?

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices
 S ⊆ V such that |S| ≥ k, and for each edge at most one of its endpoints is in S?

Vertex Cover

✓ VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least one of its endpoints is in S?

What is the smallest vertex cover?

Vertex Cover

✓ VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least one of its endpoints is in S?

Vertex Cover and Independent Set

Claim. S is an independent set iff V – S is a vertex cover.

Vertex Cover and Independent Set

Proof of if-part:
Let S be any independent set.
Consider an arbitrary edge (u, v).
S independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V - S or v ∈ V - S.
Thus, V - S covers (u, v).

Proof of only-if-part: similar

Vertex Cover and Independent Set

⊘ Claim. VERTEX-COVER ≤_p INDEPENDENT-SET
 ⊘ Proof. Given graph G = (V, E) and integer k, return "yes" iff G has an independent set of size at least n-k.
 (Is this polynomial?)

⊘ Claim. INDEPENDENT-SET ≤_p VERTEX-COVER
 ⊘ Proof. similar

Basic Reduction Strategies

Reduction by simple equivalence.
 Reduction from special case to general case.

Reduction by encoding with gadgets.

Set Cover Problem

You want all towns in the county to be within 15 minutes driving time of some fire station.

Goal: build as few fire stations as possible satisfying the driving time constraint.

(Station covers set of towns)

Set Cover

	Amherst	Granby	Hadley	Pelham	South Hadley
Amherst	0	20	8	17	19
Granby	20	0	21	23	9
Hadley	8	21	0	25	15
Pelham	17	23	25	0	31
South Hadley	19	9	15	31	0

Set Cover

SET COVER: Given a set U of elements, a collection S_1 , S_2 , ..., S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

 $U = \{A, G, H, P, SH\}$

S1 = {A, H} S2 = {G, SH} S3 = {A, H, SH}

S4 = {P} S5 = {G, H, SH}

Set Cover

SET COVER: Given a set U of elements, a collection S₁, S₂, . . . , S_m of subsets of U, and an integer k, does there exist a collection of ≤ k of these sets whose union is equal to U?

 $U = \{A, G, H, P, SH\}$

S1 = {A, H} S2 = {G, SH} S3 = {A, H, SH} S4 = {P} S5 = {G, H, SH}

k = 3

Vertex Cover is Reducible to Set Cover

⊘ Claim. VERTEX-COVER $≤_p$ SET-COVER.

Proof. Given a VERTEX-COVER instance G = (V, E) and k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Exercise

Vertex Cover is
Reducible to Set Cover
Step 1: Map the vertex cover problem into a set cover problem
U is the set of all edges
For each vertex v, create a set S_v = {e ∈ E : e incident to v }

SET COVER $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $S_{a} = \{ 3, 7 \}$ $S_{b} = \{ 2, 4 \}$ $S_{c} = \{ 3, 4, 5, 6 \}$ $S_{d} = \{ 5 \}$ $S_{e} = \{ 1 \}$ $S_{f} = \{ 1, 2, 6, 7 \}$

Vertex Cover is Reducible to Set Cover

- Step 2: Solve the Set Cover problem using the same value for k:
 - Is there a collection of at most k sets such that their union is U?

Solving for k = 2 SET COVER $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $S_{a} = \{ 3, 7 \}$ $S_{b} = \{ 2, 4 \}$ $S_{c} = \{ 3, 4, 5, 6 \}$ $S_{d} = \{ 5 \}$ $S_{e} = \{ 1 \}$ $S_{f} = \{ 1, 2, 6, 7 \}$

Vertex Cover is Reducible to Set Cover

- Step 3: Map the set cover solution back to a vertex cover solution
 - For each set in the set cover solution, select the corresponding vertex in the vertex cover problem

SET COVER $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $S_{a} = \{ 3, 7 \}$ $S_{b} = \{ 2, 4 \}$ $S_{c} = \{ 3, 4, 5, 6 \}$ $S_{d} = \{ 5 \}$ $S_{e} = \{ 1 \}$ $S_{f} = \{ 1, 2, 6, 7 \}$

Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.

Satisfiability

Term: A Boolean variable or its negation.
 Xi OR Xi

Clause: A disjunction ("or") of terms.
 C_j = x₁ ∨ x₂ ∨ x₃

• Formula Φ : A conjunction ("and") of clauses $C_1 \wedge C_2 \wedge C_3 \wedge C_4$

SAT: Given a formula, is there a truth assignment that satisfies all clauses? (i.e. all clauses evaluate to "true")

■ 3-SAT: SAT where each clause contains exactly 3 terms
 $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

3-SAT is Reducible to Independent Set

 \odot Claim. 3-SAT \leq_p INDEPENDENT-SET.

Proof. Given an instance Φ of 3-SAT, we construct an instance
 (G, k) of INDEPENDENT-SET that has an independent set of size
 k iff Φ is satisfiable.

 \odot Claim. 3-SAT \leq_{P} INDEPENDENT-SET.

Construction.

- G contains 3 vertices for each clause, one for each term.
- Connect 3 terms in a clause in a triangle.
- Connect term to each of its negations.

 \odot Claim. 3-SAT \leq_{P} INDEPENDENT-SET.

With an independent set solution, we can derive a SAT assignment.

 $x_1 = true$

- Claim. G contains independent set of size k = $|\Phi|$ iff Φ is satisfiable.
- Proof of if-part: Let S be independent set of size k.
 S must contain exactly one vertex in each triangle.
 Set these terms to true.

G

k = 3

Truth assignment is consistent and all clauses are satisfied.

- Claim. G contains independent set of size k = $|\Phi|$ iff Φ is satisfiable.
- Proof of only-if part: Given satisfying assignment, select one true term from each triangle. This is an independent set of size k.

G

k = 3

Review

Basic reduction strategies. Simple equivalence: INDEPENDENT-SET $\equiv \rho$ VERTEX-COVER. Special case to general case: VERTEX-COVER $\leq \rho$ SET-COVER. • Encoding with gadgets: $3-SAT \leq p$ INDEPENDENT-SET. Transitivity. If X ≤ $_{P}$ Y and Y ≤ $_{P}$ Z, then X ≤ $_{P}$ Z. Proof idea: Compose the two algorithms.